Explainable machine learning models of key crop characteristics from continent-wide field trial data monitored by satellite

0
  • 1.

    United Nations Department of Economic and Social Affairs. World Population Prospects: The 2015 Revision (United Nations, 2016).

  • 2.

    Burgueño, J., de los Campos, G., Weigel, K. & Crossa, J. Genomic prediction of breeding values ​​when modeling the genotype × environment interaction using dense genealogical and molecular markers. Sci culture. 52, 707-719 (2012).

    Google Scholar article

  • 3.

    Cabrera-Bosquet, L., Crossa, J., von Zitzewitz, J., Serret, MD & Luis Araus, J. High throughput phenotyping and genomic selection: the frontiers of plant breeding converge. J. Integr. Biol Plant. 54, 312-320 (2012).

  • 4.

    Zamir, D. Where have all the crop phenotypes gone? PLoS Biol. 11, e1001595 (2013).

    Google Scholar CAS Article

  • 5.

    Newman, SJ & Furbank, RT A continent-wide multi-species agronomic plant data set of one million phenotypes. Sci. Data 8, 116 (2021).

  • 6.

    NVT Protocols v1.1. 75 (Cereal Research and Development Company) https://nvt.grdc.com.au/trials/nvt-protocols (2020).

  • 7.

    Newman, SJ & Furbank, RT Continent-wide agronomic experimentation data (figshare, 2021); https://doi.org/10.6084/m9.figshare.c.5296369

  • 8.

    Justice, CO et al. Suomi NPP VIIRS Terrestrial and Cryosphere Products: Overview and Status. J. Geophys. Res. Atmos. 118, 9753-9765 (2013).

    Google Scholar article

  • 9.

    Cohen, WB & Justice, CO Validation of MODIS terrestrial ecology products: linking in situ and satellite measurements. Remote sensing Approx. 70, 1–3 (1999).

    Google Scholar article

  • ten.

    Wan, Z., Zhang, Y., Zhang, Q. & Li, Z.-L. Quality assessment and validation of the global temperature of the Earth’s surface MODIS. Int. J. Remote sensing. 25, 261-274 (2004).

    Google Scholar article

  • 11.

    Huete, A. et al. Overview of the radiometric and biophysical performances of MODIS vegetation indices. Remote sensing Approx. 83, 195-213 (2002).

    Google Scholar article

  • 12.

    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, IA The new active fire detection data product VIIRS 375m: algorithm description and initial evaluation. Remote sensing Approx. 143, 85-96 (2014).

    Google Scholar article

  • 13.

    Deng, H. Interpretation of sets of trees with inTrees. Int. J. Sci data. Anal. 7, 277-287 (2019).

    Google Scholar article

  • 14.

    Breiman, L. & Cutler, A. randomForest: Breiman and Cutler random forests for classification and regression. Package R version 4.6-14 https://cran.r-project.org/web/packages/randomForest/randomForest.pdf (2012).

  • 15.

    Breiman, L. Random forests. Mach. To learn. 45, 5-32 (2001).

    Google Scholar article

  • 16.

    Friedman, JH Approximation of the Greedy function: a gradient amplification machine. Anne. Stat. 29, 1189-1232 (2001).

    Google Scholar article

  • 17.

    Breiman, L., Friedman, JH, Olshen, RA & Stone, CJ Classification and regression trees (Chapman and Hall, 1984).

  • 18.

    Cortes, C. & Vapnik, V. Support vector networks. Mach. To learn. 20, 273-297 (1995).

    Google Scholar

  • 19.

    Steinwart, I. & Thomann, P. liquidSVM. Package R version 1.2.4 https://cran.r-project.org/package=liquidSVM (2017).

  • 20.

    Mevik, BH & Wehrens, R. The pls package: principal component and partial least squares regression in R. J. Stat. Software. https://doi.org/10.18637/jss.v018.i02 (2007).

  • 21.

    Schymanski, SJ, Or, D. & Zwieniecki, M. Stomatal control and thermal and hydraulic capacities of sheets under rapid environmental fluctuations. PLoS A 8, e54231 (2013).

    Google Scholar CAS Article

  • 22.

    Vialet-Chabrand, S. & Lawson, T. Dynamic leaf energy balance: derivation of stomatal conductance from thermal imaging in a dynamic environment. J. Exp. Bot. 70, 2839-2855 (2019).

    Google Scholar CAS Article

  • 23.

    Gonzalez-Dugo, MP et al. A comparison of operational models based on remote sensing to estimate crop evapotranspiration. Agric. Meteorol. 149, 1843-1853 (2009).

    Google Scholar article

  • 24.

    Food balance sheets (2014-) (FAO, 2016); http://faostat3.fao.org/download/FB/FBS/E

  • 25.

    Sanchez-Azofeifa, A. et al. Estimation of the distribution of Tabebuia guayacan (Bignoniaceae) using high resolution remote sensing images. Sensors 11, 3831-3851 (2011).

    Google Scholar article

  • 26.

    Furbank, RT, Sirault, XRR & Stone, E. in Supporting global food security: the link between science and policy (ed. Zeigler RS) 203-223 (CSIRO Publishing, 2019).

  • 27.

    Alcorn, MA et al. in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 4840–4849 (IEEE, 2019). https://doi.org/10.1109/CVPR.2019.00498

  • 28.

    Holloway, E. The Un-Learnable Checkerboard Pattern. Common. Blyth Inst. 1, 78-80 (2019).

    Google Scholar article

  • 29.

    Mohri, M. & Medina, AM in Algorithmic learning theory (eds Bshouty, NH et al.) 124-138 (Springer Verlag, 2012).

  • 30.

    Lehmann, J., Coumou, D. & Frieler, K. Record precipitation increases under global warming. Clim. Switch 132, 501-515 (2015).

    Google Scholar article

  • 31.

    Westra, S. & Sisson, SA Detection of non-stationarity in extreme precipitation using a max-stable process model. J. Hydrol. 406, 119-128 (2011).

    Google Scholar article

  • 32.

    Vaze, J. et al. Climatic non-stationarity: validity of calibrated precipitation-discharge models for use in climate change studies. J. Hydrol. 394, 447-457 (2010).

  • 33.

    Verdon-Kidd, DC & Kiem, AS Quantification of drought risk in a non-stationary climate. J. Hydrometeorol. 11, 1019-1031 (2010).

    Google Scholar article

  • 34.

    Milly, PCD et al. Climate change: stationarity is dead: where to manage water? Science 319, 573-574 (2008).

    Google Scholar CAS Article

  • 35.

    Rosenzweig, C. et al. in Climate change 2007: impacts, adaptation and vulnerability (eds Parry, ML et al.) 79-131 (Cambridge Univ. Press, 2007).

  • 36.

    Sun, F., Roderick, ML & Farquhar, GD Statistics of precipitation, stationarity and climate change. Proc. Natl Acad. Sci. United States 115, 2305-2310 (2018).

    Google Scholar CAS Article

  • 37.

    Lenaerts, B., Collard, BCY & Demont, M. Improving global food security through accelerated plant breeding. Sci plant. 287, 110207 (2019).

  • 38.

    McCarl, B., Villavicencio, X. & Wu, X. Climate change and future analysis: is stationarity dying? A m. J. Agric. Econ. 90, 1241-1247 (2008).

    Google Scholar article

  • 39.

    Towell, GG & Shavlik, JW Knowledge-based artificial neural networks. Artif. Inform. 1, 119-165 (1994).

    Google Scholar article

  • 40.

    Bae, JK & Kim, J. Combination of neural network models and inductive learning algorithms. Expert system. Appl. 38, 4839-4850 (2011).

    Google Scholar article

  • 41.

    Jamshidian, M. & Jalal, S. Completely random homoscedasticity, normality, and absence tests for incomplete multivariate data. Psychometry 75, 649-674 (2010).

    Google Scholar article

  • 42.

    Dong, Y. & Peng, C.-YJ Missing data-based methods for researchers. Springerplus 2, 222 (2013).

    Google Scholar article

  • 43.

    Core team R. A: A language and an environment for statistical computing (R Foundation for Statistical Informatics, 2013).

  • 44.

    Wright, MN & Ziegler, A. Ranger: A Fast Implementation of Random Forests for Large Data in C ++ and R. J. Stat. Software 77, 1-17 (2017).

    Google Scholar article


  • Source link

    Leave A Reply

    Your email address will not be published.