Study offers deeper insight into the complexity of the human brain

A recent study from the Complexity Science Hub (CSH) in Vienna paves the way for a better understanding of the complexity of the human brain, one of the largest and most sophisticated organs in the human body. The study – which develops a mathematical and computational framework for analyzing neural activity in C.elegansa small worm that has been used as a model organism to study neural activity – was released on Friday in the magazine Computational Biology PLoS.

The microscopic organism, made up of just 1,000 cells – including 300 neurons – has been accurately mapped, but the role of neurons in controlling behavior remains controversial, says Edward Lee, post-doctoral fellow at CSH and author of the paper. .

Based on recent advances in measuring neurons in living worms, the new study offers a way to unmask the roles of neurons using more natural perturbations.

“In the work, we try to be more holistic, in the sense that we take all the data and try to figure out which sets of neurons go together and are associated with a particular behavior,” says Lee. “In other words, if I want the worm to turn left, I don’t care about one particular neuron, I probably care about several different neurons.”

Experiment with a simple neural system

Lee and his team study the worm as an example because its simple neural system provides a solid foundation for understanding the brain mechanisms of higher animals, such as humans. The researchers developed a mathematical model for collective neural activity. They then conducted a silicone experiment with small neural disturbances that can trigger behavioral responses and can be replicated in a scientific trial.

“The idea is that if you can, in a model, push each of the neurons in different ways, you can measure how the behavior changes. And if the behavior changes, for example, more strongly when two neurons are brought closer together, then somehow so these two neurons form a whole and are not independent of each other,” Lee explains.

Future research in neuroscience

Lee says the results point to interesting neurons that can be used as a starting point for neuroscientific research. The study, which analyzed about 50 neurons in the C.elegans nervous system, suggests that there are a handful of “pivotal” neurons that are associated with a statistically significant response. “It might be a good idea to examine these neurons,” says the CSH scientist.

“Knowing that a neuron is involved in a specific behavior doesn’t tell you what it is doing. Some of the experimental results don’t indicate that a neuron was necessarily involved in a behavior in a significant way, for example,” says Lee. . When several neurons are involved in a particular behavior, it can be interesting to study how they work together or against each other.

The article poses several new hypotheses regarding how behavioral control might be centralized in particular neural cells. “We offer a theoretical framework for asking these questions and making predictions,” Lee concludes, adding that he hopes experiments will answer them in the years to come.


Vienna Center for Complexity Science

Journal reference:


Comments are closed.